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ABSTRACT

We study the problem ofmaking item recommendations to ephemeral

groups, which comprise users with limited or no historical activities

together. Existing studies target persistent groups with substantial

activity history, while ephemeral groups lack historical interactions.

To overcome group interaction sparsity, we propose data-driven

regularization strategies to exploit both the preference covariance
amongst users who are in the same group, as well as the contextual
relevance of users’ individual preferences to each group.

We make two contributions. First, we present a recommender

architecture-agnostic framework GroupIM that can integrate arbi-

trary neural preference encoders and aggregators for ephemeral

group recommendation. Second, we regularize the user-group la-

tent space to overcome group interaction sparsity by: maximizing

mutual information between representations of groups and group

members; and dynamically prioritizing the preferences of highly

informative members through contextual preference weighting.

Our experimental results on several real-world datasets indicate

significant performance improvements (31-62% relative NDCG@20)

over state-of-the-art group recommendation techniques.

CCS CONCEPTS

• Information systems→Recommender systems; •Comput-

ing methodologies → Neural networks.
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1 INTRODUCTION

We address the problem of recommending items to ephemeral
groups, which comprise users who purchase very few (or no) items

together [26]. The problem is ubiquitous, and appears in a variety of

familiar contexts, e.g., dining with strangers, watching movies with

new friends, and attending social events. We illustrate key chal-

lenges with an example: Alice (who loves Mexican food) is taking

a visitor Bob (who loves Italian food) to lunch along with her col-

leagues, where will they go to lunch? There are three things to note

here: first, the group is ephemeral, since there is no historical inter-
action observed for this group. Second, individual preferences may
depend on other group members. In this case, the group may go to a

fine-dining Italian restaurant. However, when Alice is with other

friends, they may go to Mexican restaurants. Third, groups com-

prise users with diverse individual preferences, and thus the group

recommender needs to be cognizant of individual preferences.

Prior work primarily target persistent groupswhich refer to fixed,

stable groups where members have interacted with numerous items

as a group (e.g., families watchingmovies). Theymainly fall into two

categories: heuristic pre-defined aggregation (e.g., least misery [3])

that disregards group interactions; data-driven strategies such as

probabilistic models [27, 40] and neural preference aggregators [7,

34]. A key weakness is that these methods either ignore individual

user activities [34, 35] or assume that users have the same likelihood

to follow individual and collective preferences, across different

groups [7, 27, 40]. Lack of expressivity to distinguish the role of

individual preferences across groups results in degenerate solutions

for sparse ephemeral groups. A few methods exploit external side

information in the form of a social network [8, 38], user personality

traits and demographics [11], for group decision making. However,

side information may often be unavailable.

We train robust ephemeral group recommenders without re-

sorting to any extra side information. Two observations help: first,

while groups are ephemeral, group members may have rich indi-

vidual interaction histories; this can alleviate group interaction

sparsity. Second, since groups are ephemeral with sparse training

interactions, base group recommenders need reliable guidance to

learn informative (non-degenerate) group representations, but the

guidance needs to be data-driven, rather than a heuristic.

To overcome group interaction sparsity, our key technical insight

is to regularize the latent space of user and group representations

in a manner that exploits the preference covariance amongst indi-

viduals who are in the same group, as well as to incorporate the

contextual relevance of users’ personal preferences to each group.

Thus, we propose two data-driven regularization strategies. First,
we contrastively regularize the user-group latent space to capture
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social user associations and distinctions across groups. We achieve

this by maximizing mutual information (MI) between represen-

tations of groups and group members, which encourages group

representations to encode shared group member preferences while

regularizing user representations to capture their social associa-

tions. Second, we contextually identify informative group members

and regularize the corresponding group representation to reflect

their personal preferences. We introduce a novel regularization ob-

jective that contextually weights users’ personal preferences in each

group, in proportion to their user-group MI. Group-adaptive pref-
erence weighting precludes degenerate solutions that arise during

static regularization over ephemeral groups with sparse activities.

We summarize our key contributions below:

• Architecture-agnostic Framework: To the best of our knowl-

edge, Group Information Maximization (GroupIM) is the first

recommender architecture-agnostic framework for group rec-

ommendation. Unlike prior work [7, 34] that design customized

preference aggregators, GroupIM can integrate arbitrary neural

preference encoders and aggregators. We show state-of-the-art

results with simple efficient aggregators (such as meanpool) that

are contrastively regularizedwithin our framework. The effective-

ness of meanpool signifies substantially reduced inference costs
without loss in model expressivity. Thus, GroupIM facilitates

straightforward enhancements to base neural recommenders.

• Group-adaptive Preference Prioritization: We learn robust

estimates of group-specific member relevance. In contrast, prior

work incorporate personal preferences through static regular-

ization [7, 27, 40]. We use Mutual Information to dynamically

learn user and group representations that capture preference co-

variance across individuals in the same group; and prioritize the

preferences of highly relevant members through group-adaptive

preference weighting; thus effectively overcoming group interac-

tion sparsity in ephemeral groups. An ablation study confirms the

superiority of our MI based regularizers over static alternatives.

• Robust Experimental Results: Our experimental results indi-

cate significant performance gains for GroupIM over state-of-

the-art group recommenders on four publicly available datasets

(relative gains of 31-62% NDCG@20 and 3-28% Recall@20). Sig-

nificantly, GroupIM achieves stronger gains for: groups of larger

sizes; and groups with diverse member preferences.

We organize the rest of the paper as follows. In Section 3, we

formally define the problem, introduce a base group recommender

unifying existing neural methods, and discuss its limitations. We

describe our proposed framework GroupIM in Section 4, present

experimental results in Section 5, finally concluding in Section 6.

2 RELATEDWORK

Group Recommendation: This line of work can be divided into

two categories based on group types: persistent and ephemeral.
Persistent groups have stable members with rich activity history

together, while ephemeral groups comprise users who interact with

very few items together [26]. A common approach is to consider

persistent groups as virtual users [16], thus, personalized recom-

menders can be directly applied. However, such methods cannot

handle ephemeral groups with sparse interactions. We focus on the

more challenging scenario—recommendations to ephemeral groups.

Prior work either aggregate recommendation results (or item

scores) for each member, or aggregate individual member prefer-

ences, towards group predictions. They fall into two classes: score
(or late) aggregation [3] and preference (or early) aggregation [40].

Popular score aggregation strategies include least misery [3],

average [5], maximum satisfaction [6], and relevance and disagree-

ment [1]. However, these are hand-crafted heuristics that overlook

real-world group interactions. Baltrunas et al. [3] compare differ-

ent strategies to conclude that there is no clear winner, and their

relative effectiveness depends on group size and group coherence.

Early preference aggregation strategies [39] generate recommen-

dations by constructing a group profile that combines the profiles

(raw item histories) of group members. Recent methods adopt a

model-based perspective to learn data-driven models. Probabilistic
methods [22, 27, 40] model the group generative process by con-

sidering both the personal preferences and relative influence of

members, to differentiate their contributions towards group deci-

sions. However, a key weakness is their assumption that users have

the same likelihood to follow individual and collective preferences,

across different groups. Neural methods explore attention mech-

anisms [2] to learn data-driven preference aggregators [7, 34, 35].

MoSAN [34] models group interactions via sub-attention networks;

however, MoSAN operates on persistent groups while ignoring

users’ personal activities. AGREE [7] employs attentional networks

for joint training over individual and group interactions; yet, the

extent of regularization applied on each user (based on personal

activities) is the same across groups, which results in degenerate

solutions when applied to ephemeral groups with sparse activities.

An alternative approach to tackle interaction sparsity is to exploit

external side information, e.g., social network of users [8, 17, 31, 38],
personality traits [43], demographics [11], and interpersonal rela-

tionships [10, 12]. In contrast, our setting is conservative and does

not include extra side information: we know only user and item ids,

and item implicit feedback. We address interaction sparsity through

novel data-driven regularization and training strategies [19]. Our

goal is to enable a wide spectrum of neural group recommenders to

seamlessly integrate suitable preference encoders and aggregators.

Mutual Information: Recent neural MI estimation methods [4]

leverage the InfoMax [21] principle for representation learning.

They exploit the structure of the input data (e.g., spatial locality
in images) via MI maximization objectives, to improve representa-

tional quality. Recent advances employ auto-regressive models [24]

and aggregation functions [15, 33, 37] with noise-contrastive loss

functions to preserve MI between structurally related inputs.

We leverage the InfoMax principle to exploit the preference co-

variance structure shared amongst group members. A key novelty

of our approach is MI-guided weighting to regularize group embed-

dings with the personal preferences of highly relevant members.

3 PRELIMINARIES

In this section, we first formally define the ephemeral group rec-

ommendation problem. Then, we present a base neural group rec-

ommender R that unifies existing neural methods into a general

framework. Finally, we analyze the key shortcomings ofR to discuss

motivations for maximizing user-group mutual information.



3.1 Problem Definition

We consider the implicit feedback setting (only visits, no explicit

ratings) with a user set U, an item set I, a group set G, a binary
|U| × |I| user-item interaction matrix XU , and a binary |G| ×
|I| group-item interaction matrix XG . We denote xu , xд as the

corresponding rows for user u and group д in XU and XG , with

|xu |, |xд | indicating their respective number of interacted items.

An ephemeral group д ∈ G comprises a set of |д | users uд =
{uд

1
, . . . ,u

д
|д |} ⊂ U with sparse historical interactions xд .

Ephemeral Group Recommendation: We evaluate group rec-

ommendation on strict ephemeral groups, which have never inter-

acted together before during training. Given a strict ephemeral

group д during testing, our goal is to generate a ranked list over

the item set I relevant to users in uд , i.e., learn a function fG :

P(U) × I 7→ R that maps an ephemeral group and an item to a

relevance score, where P(U) is the power set ofU.

3.2 Base Neural Group Recommender

Several neural group recommenders have achieved impressive re-

sults [7, 34]. Despite their diversity in modeling group interactions,

we remark that state-of-the-art neural methods share a clear model

structure: we present a base group recommender R that includes

three modules: a preference encoder; a preference aggregator; and

a joint user and group interaction loss. Unifying these neural group

recommenders within a single framework facilitates deeper analysis

into their shortcomings in addressing ephemeral groups.

The base group recommender R first computes user representa-

tions E ∈ R |U |×D
from user-item interactions XU using a prefer-

ence encoder fenc(·), followed by applying a neural preference ag-

gregator fagg(·) to compute the group representation eд for groupд.
Finally, the group representation eд is jointly trained over the group

XG and user XU interactions, to make group recommendations.

3.2.1 User Preference Representations. User embeddings E
constitute a latent representation of their personal preferences,

indicated in the interaction matrix XU . Since latent-factor collabo-

rative filtering methods adopt a variety of strategies (such as matrix

factorization, autoencoders, etc.) to learn user embeddings E, we

define the preference encoder fenc : |U| × Z |I |
2

7→ RD with two

inputs: user u and associated binary personal preference vector xu .

eu = fenc(u,xu ) ∀u ∈ U (1)

We can augment eu with additional inputs, including contextual

attributes, item relationships, etc. via customized encoders [42].

3.2.2 Group Preference Aggregation. A preference aggregator

models the interactions among group members to compute an ag-

gregate representation eд ∈ RD for ephemeral group д ∈ G. Since

groups are sets of users with no inherent ordering, we consider the

class of permutation-invariant functions (such as summation or

pooling operations) on sets [41]. Specifically, fagg(·) is permutation-

invariant to the order of group member embeddings {eu1 , . . . , eu |д | }.
We compute eд using an arbitrary preference aggregator fagg(·) as:

eд = fagg({eu : u ∈ uд}) ∀д ∈ G (2)

3.2.3 Joint User and Group Loss. The group representation eд
is trained over the group-item interactions XG with group-loss

LG . The framework supports different recommendation objectives,

including pairwise [29] and pointwise [14] ranking losses. Here, we

use a multinomial likelihood formulation owing to its impressive

results in user-based neural collaborative filtering [20]. The group

representation eд is transformed by a fully connected layer and

normalized by a softmax function to produce a probability vector

π (eд) over I. The loss measures the KL-divergence between the

normalized purchase history xд/|xд | (xд indicates items interacted

by group д) and predicted item probabilities π (eд), given by:

LG = −
∑
д∈G

1

|xд |
∑
i ∈I

xдi logπi (eд); π (eд) = softmax(WIeд) (3)

Next, we define the user-loss LU that regularizes the user repre-

sentations E with user-item interactions XU , thus facilitating joint

training with shared encoder fenc(·) and predictor (WI ) layers [7].

We use a similar multinomial likelihood-based formation, given by:

LU = −
∑
u ∈U

1

|xu |
∑
i ∈I

xui logπi (eu ); LR = LG + λLU (4)

where LR denotes the overall loss of the base recommender R with

balancing hyper-parameter λ. AGREE [7] trains an attentional ag-

gregator with pairwise regression loss over bothXU andXG , while

MoSAN [34] trains a collection of sub-attentional aggregators with

bayesian personalized ranking [29] loss on just XG . Thus, state-of-

the-art neural methods AGREE [7] and MoSAN [34] are specific

instances of the framework described by base recommender R.

3.3 Motivation

To address ephemeral groups, we focus on regularization strategies

that are independent of the base recommender R. With the rapid

advances in neural methods, we envision future enhancements in

neural architectures for user representations and group preference

aggregation. Since ephemeral groups by definition purchase very

few items together, base recommenders suffer from inadequate

training data in group interactions. Here, the group embedding eд
receives back-propagation signals from sparse interacted items in

xд , thus lacking evidence to reliably estimate the role of each mem-

ber. To address group interaction sparsity towards robust ephemeral

group recommendation, we propose two data-driven regulariza-

tion strategies that are independent of the base recommendation

mechanisms to generate individual and group representations.

3.3.1 ContrastiveRepresentationLearning. Wenote that users’

preferences are group-dependent; and users occurring together in

groups typically exhibit covarying preferences (e.g., shared cuisine

tastes). Thus, group activities reveal distinctions across groups (e.g.,
close friends versus colleagues) and latent user associations (e.g.,
co-occurrence of users in similar groups), that are not evident when

the base recommender R only predicts sparse group interactions.

We contrast the preference representations of group members

against those of non-member users with similar item histories,

to effectively regularize the latent space of user and group rep-

resentations. This promotes the representations to encode latent

discriminative characteristics shared by group members, that are

not discernible from their limited interacted items in XG .

3.3.2 Group-adaptive Preference Prioritization. To overcome

group interaction sparsity, we critically remark that while groups



are ephemeral with sparse interactions, the group members have

comparatively richer individual interaction histories. Thus, we pro-

pose to selectively exploit the personal preferences of group mem-

bers to enhance the quality of group representations.

The user-loss LU (equation 4) in base recommender R attempts

to regularize user embeddings E based on their individual activities

XU . A key weakness is that LU forces eu to uniformly predict pref-

erencesxu across all groups containing useru. Since groups interact
with items differently than individual members, inaccurately utiliz-

ingXU can become counter-productive. Fixed regularization results

in degenerate models that either over-fit or are over-regularized,

due to lack of flexibility in adapting preferences per group.

To overcome group interaction sparsity, we contextually identify

members that are highly relevant to the group and regularize the

group representation to reflect their personal preferences. To mea-

sure contextual relevance, we introduce group-specific relevance

weightsw(u,д) for each user u wherew(·) is a learned weighting

function of both user and group representations. This enhances the

expressive power of the recommender, thus effectively alleviating

the challenges imposed by group interaction sparsity.

In this section, we defined ephemeral group recommendation,

and presented a base group recommender architecture with three

modules: user representations, group preference aggregation, and

joint loss functions. Finally, we motivated the need to: contrastively

regularize the user-group space to capture member associations

and group distinctions; and learn group-specific weightsw(u,д) to
regularize group representations with individual user preferences.

4 GROUPIM FRAMEWORK

In this section, we first motivatemutual information towards achiev-

ing our two proposed regularization strategies, followed by a de-

tailed description of our proposed framework GroupIM.

4.1 Mutual Information Maximization.

We introduce our user-group mutual information maximization

approach through an illustration. We extend the introductory ex-

ample to illustrate how to regularize Alice’s latent representation

based on her interactions in two different groups. Consider Alice

who first goes out for lunch to an Italian restaurant with a visitor

Bob, and later dines at a Mexican restaurant with her friend Charlie.

First, Alice plays different roles across the two groups (i.e., stronger
influence among friends than with Bob) due to the differences in

group context (visitors versus friends). Thus, we require a measure

to quantify the contextual informativeness of user u in group д.
Second, we require the embedding of Alice to capture association

with both visitor Bob and friend Charlie, yet express variations in

her group activities. Thus, it is necessary to not only differentiate
the role of Alice across groups, but also compute appropriate repre-

sentations that make her presence in each group more coherent.
To achieve these two goals at once, we maximize user-group

mutual information (MI) to regularize the latent space of user and

group representations, and set group-specific relevance weights

w(u,д) in proportion to their estimated MI scores. User-group MI

measures the contextual informativeness of a memberu towards the

group decision through the reduction in group decision uncertainty

when user u is included in group д. Unlike correlation measures

that quantify monotonic linear associations, mutual information

captures complex non-linear statistical relationships between co-

varying random variables. Our proposed MI maximization strategy

enables us to achieve our two-fold motivation (Section 3.3):

• Altering LatentRepresentationGeometry: Maximizing user-

group MI encourages the group embedding eд to encode prefer-

ence covariance across group members, and regularizes the user

embeddings E to capture social associations in group interactions.

• Group-specificUserRelevance: By quantifyingw(u,д) through
user-group mutual information, we accurately capture the extent

of informativeness for user u in group д, thus guiding group-

adaptive personal preference prioritization.

4.2 User-Group MI Maximization.

Neural MI estimation [4] has demonstrated feasibility to maximize

MI by training a classifier D (a.k.a, discriminator network) to accu-

rately separate positive samples drawn from their joint distribution

from negative samples drawn from the product of marginals.

We maximize user-group MI between group member represen-

tations {eu : u ∈ uд} and group representation eд (computed in

equations 1 and 2 respectively). We train a contrastive discriminator
networkD : RD×RD 7→ R+, whereD(eu ,eд) represents the proba-
bility score assigned to this user-group pair (higher scores for users

who are members of group д). The positive samples (eu ,eд) for D
are the preference representations of (u,д) pairs such that u ∈ uд ,
and negative samples are derived by pairing eд with the represen-

tations of non-member users sampled from a negative sampling

distribution PN(u |д). The discriminator D is trained on a noise-

contrastive type objective with a binary cross-entropy (BCE) loss

between samples from the joint (positive pairs), and the product of

marginals (negative pairs), resulting in the following objective:

LMI = − 1

|G|
∑
д∈G

1

αд

[ ∑
u ∈uд

logDuд +

Mд∑
j=1
Eũ∼PN log(1 − Dũд)

]
(5)

where αд = |д |+Mд ,Mд is the number of negative users sampled

for group д and Duд is a shorthand for D(eu ,eд). This objective
maximizes MI between eu and eд based on the Jensen-Shannon

divergence between the joint and the product of marginals [33].

We employ a preference-biased negative sampling distribution

PN(ũ |д), which assigns higher likelihoods to non-member users
who have purchased the group items xд . These hard negative ex-
amples encourage the discriminator to learn latent aspects shared

by group members by contrasting against other users with similar

individual item histories. We define PN(ũ |д) as:

PN(ũ |д) ∝ ηI(xTũ · xд > 0}) + (1 − η) 1

|U| (6)

where I(·) is an indicator function and η controls the sampling bias.

We set η = 0.5 across all our experiments. In comparison to random

negative sampling, our experiments indicate that preference-biased

negative user sampling exhibits better discriminative abilities.

When LMI is trained jointly with the base recommender loss LR
(equation 4), maximizing user-group MI enhances the quality of

user and group representations computed by the encoder fenc(·)
and aggregator fagg(·). We now present our approach to overcome

the limitations of the fixed regularizer LU (Section 3.3).
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Figure 1: Neural architecture diagram of GroupIM depicting model components and loss terms appearing in Equation 9.

4.3 Contextual User Preference Weighting

In this section, we describe a contextual weighting strategy to iden-

tify and prioritize personal preferences of relevant group members,

to overcome group interaction sparsity. We avoid degenerate solu-

tions by varying the extent of regularization induced by each xu
(for user u) across groups through group-specific relevance weights

w(u,д). Contextual weighting accounts for user participation in

diverse ephemeral groups with different levels of shared interests.

Bymaximizing user-groupMI, the discriminatorD outputs scores

D(eu ,eд) that quantify the contextual informativeness of each (u,д)
pair (higher scores for informative users). Thus, we set the rele-

vance weightw(u,д) for group member u ∈ uд to be proportional

toD(eu ,eд). Instead of regularizing the user representations E with

xu in each group (LU in eqn 4), we directly regularize the group

representation eд with xu in proportion toD(eu ,eд) for each group
member u. Direct optimization of eд (instead of eu ) results in more

effective regularization, especially with sparse group activities. We

define the contextually weighted user-loss LUG as:

LUG = −
∑
д∈G

1

|xд |
∑
i ∈I

∑
u ∈uд

D(eu ,eд) xui logπi (eд) (7)

where LUG effectively regularizes eд with the individual activi-

ties of group member u with contextual weight D(eu ,eд).
The overall model objective of our framework GroupIM includes

three terms: LG , LUG , and LMI , which is described in Section 4.4.4

in detail. GroupIM regularizes the latent representations computed

by fenc(·) and fagg(·) through user-group MI maximization (LMI )

to contrastively capture group member associations; and contextual

MI-guided weighting (LUG ) to prioritize individual preferences.

4.4 Model Details

We now describe the architectural details of preference encoder

fenc(·), aggregator fagg(·), discriminator D, and an alternative op-

timization approach to train our framework GroupIM.

4.4.1 User Preference Encoder. To encode individual user pref-
erences XU into preference embeddings E, we use a Multi-Layer

Perceptron with two fully connected layers, defined by:

eu = fenc(xu ) = σ (WT
2
(σ (WT

1
xu + b1) + b2)

with learnable weight matricesW1 ∈ R |I |×D
andW2 ∈ RD×D

,

biases b1,b2 ∈ RD , and tanh(·) activations for non-linearity σ .
Pre-training: We pre-train the weights and biases of the first

encoder layer (W1,b1) on the user-item interaction matrixXU with

user-loss LU (equation 4). We use these pre-trained parameters

to initialize the first layer of fenc(·) before optimizing the overall

objective of GroupIM. Our ablation studies in Section 5.5 indicate

significant improvements owing to this initialization strategy.

4.4.2 Group Preference Aggregators. We consider three pref-

erence aggregators Maxpool, Meanpool and, Attention, which

are widely used in graph neural networks [13, 30, 36] and have

close ties to aggregators examined in prior work, i.e., Maxpool

and Meanpool mirror the heuristics of maximum satisfaction [6]

and averaging [5], while attentions learn varying member contri-

butions [7, 34]. We define the three preference aggregators below:

• Maxpool: The preference embedding of each member is passed

throughMLP layers, followed by element-wise max-pooling to

aggregate group member representations, given by:

eд = max({σ (Waggeu + b),∀u ∈ uд})
where max denotes the element-wise max operator and σ (·) is a
nonlinear activation. Intuitively, theMLP layers compute features

for each member, and max-pooling over each of the computed

features effectively captures different aspects of group members.

• Meanpool: We similarly apply an element-wise mean-pooling

operation after the MLP, to compute group representation eд as:

eд = mean({σ (Waggeu + b),∀u ∈ uд}
• Attention: To explicitly differentiate group members’ roles, we

employ neural attentions [2] to compute a weighted sum of mem-

bers’ preference representations, where the weights are learned

by an attention network, parameterized by a singleMLP layer.

eд =
∑
u ∈uд

αuWaggeu αu =
exp(hTWaggeu )∑

u′ ∈uд
exp(hTWaggeu′ )



Dataset Yelp Weeplaces Gowalla Douban

# Users 7,037 8,643 25,405 23,032

# Items 7,671 25,081 38,306 10,039

# Groups 10,214 22,733 44,565 58,983

# U-I interactions 220,091 1,358,458 1,025,500 1,731,429

# G-I Interactions 11,160 180,229 154,526 93,635

Avg. # items/user 31.3 58.83 40.37 75.17

Avg. # items/group 1.09 2.95 3.47 1.59

Avg. group size 6.8 2.9 2.8 4.2

Table 1: Summary statistics of four real-world datasets with

ephemeral groups. Group-Item interactions are sparse: aver-

age number of interacted items per group < 3.5.

where αu indicates the contribution of a user u towards the

group decision. This can be trivially extended to item-conditioned

weighting [7], self-attention [35] and sub-attention networks [34].

4.4.3 Discriminator Architecture. The discriminator architec-

ture learns a scoring function to assign higher scores to observed

(u,д) pairs relative to negative examples, thus parameterizing group-

specific relevancew(u,д). Similar to existing work [33], we use a

simple bilinear function to score user-group representation pairs.

D(eu ,eд) = σ (eTuWeд) (8)

whereW is a learnable scoring matrix and σ is the logistic sigmoid

non-linearity function to convert raw scores into probabilities of

(eu ,eд) being a positive example. We leave investigation of further

architectural variants for the discriminator D to future work.

4.4.4 Model Optimization. The overall objective of GroupIM is

composed of three terms, the group-loss LG (Equation 3), contex-

tually weighted user-loss LUG (Equation 7), and MI maximization

loss LMI (Equation 5). The combined objective is given by:

L = LG︸︷︷︸
Group Recommendation Loss

+

Contextually Weighted User Loss︷︸︸︷
λLUG + LMI︸︷︷︸

User-Group MI Maximization Loss

(9)

We train GroupIM using an alternating optimization schedule. In

the first step, the discriminatorD is held constant, while optimizing

the group recommender on LG + λLUG . The second step trains D
on LMI , resulting in gradient updates for both parameters of D as

well as those of the encoder fenc(·) and aggregator fagg(·).
Thus, the discriminator D only seeks to regularize the model (i.e.,

encoder and aggregator) during training through loss terms LMI
and LUG . During inference, we directly use the regularized encoder

fenc(·) and aggregator fagg(·) to make group recommendations.

5 EXPERIMENTS

In this section, we present an extensive quantitative and qualita-

tive analysis of our model. We first introduce datasets, baselines,

and experimental setup (Section 5.1, 5.2, and 5.3), followed by our

main group recommendation results (Section 5.4). In Section 5.5,

we conduct an ablation study to understand our gains over the

base recommender. In Section 5.6, we study how key group char-

acteristics (group size, coherence, and aggregate diversity) impact

recommendation results. In Section 5.7, we visualize the variation

in discriminator scores assigned to group members, for different

kinds of groups. Finally, we discuss limitations in Section 5.8.

5.1 Datasets

First, we conduct experiments on large-scale POI (point-of-interest)

recommendation datasets extracted from three location-based so-

cial networks. Since the POI datasets do not contain explicit group

interactions, we construct group interactions by jointly using the

check-ins and social network information: check-ins at the same

POI within 15 minutes by an individual and her subset of friends in

the social network together constitutes a single group interaction,

while the remaining check-ins at the POI correspond to individual

interactions. We define the group recommendation task as recom-

mending POIs to ephemeral groups of users. The datasets were

pre-processed to retain users and items with five or more check-ins

each. We present dataset descriptions below:

• Weeplaces
1
: we extract check-ins on POIs over all major cities

in the United States, across various categories including Food,

Nightlife, Outdoors, Entertainment and Travel.

• Yelp
2
: we filter the entire dataset to only include check-ins on

restaurants located in the city of Los Angeles.

• Gowalla [23]: we use restaurant check-ins across all cities in the

United States, in the time period upto June 2011.

Second, we evaluate venue recommendation on Douban, which

is the largest online event-based social network in China.

• Douban [38]: users organize and participate in social events,

where users attend events together in groups and items corre-

spond to event venues. During pre-processing, we filter out users

and venues with less than 10 interactions each.

Groups across all datasets are ephemeral since group interactions

are sparse (average number of items per group < 3.5 in Table 1)

5.2 Baselines

We compare our framework against state-of-the-art baselines that

broadly fall into two categories: score aggregation methods with

predefined aggregators, and data-driven preference aggregators.

• Popularity [9]: recommends items based on item popularity,

which is measured by its interaction count in the training set.

• User-based CF + Score Aggregation: We utilize a state-of-the-

art neural recommendationmodel VAE-CF [20], followed by score

aggregation via: averaging (AVG), least-misery (LM), maximum

satisfaction (MAX), and relevance-disagreement (RD).

• COM [40]: a probabilistic generative model that considers group

members’ individual preferences and topic-dependent influence.

• CrowdRec [27]: a generative model that extends COM through

item-specific latent variables capturing their global popularity.

• MoSAN [34]: a neural group recommender that employs a col-

lection of sub-attentional networks to model group member in-

teractions. Since MoSAN originally ignores individual activities

XU , we include XU into XG as pseudo-groups with single users.

• AGREE [7]: a neural group recommender that utilizes attentional

preference aggregation to compute item-specific group member

weights, for joint training over individual and group activities.

1
https://www.yongliu.org/datasets/

2
https://www.yelp.com/dataset/challenge

https://www.yongliu.org/datasets/
https://www.yelp.com/dataset/challenge


Dataset Yelp (LA) Weeplaces Gowalla Douban

Metric N@20 N@50 R@20 R@50 N@20 N@50 R@20 R@50 N@20 N@50 R@20 R@50 N@20 N@50 R@20 R@50

Predefined Score Aggregators

Popularity [9] 0.000 0.000 0.001 0.001 0.063 0.074 0.126 0.176 0.075 0.088 0.143 0.203 0.003 0.005 0.009 0.018

VAE-CF + AVG [5, 20] 0.142 0.179 0.322 0.513 0.273 0.313 0.502 0.666 0.318 0.362 0.580 0.758 0.179 0.217 0.381 0.558

VAE-CF + LM [3, 20] 0.097 0.120 0.198 0.316 0.277 0.311 0.498 0.640 0.375 0.409 0.610 0.750 0.221 0.252 0.414 0.555

VAE-CF + MAX [6, 20] 0.099 0.133 0.231 0.401 0.229 0.270 0.431 0.604 0.267 0.316 0.498 0.702 0.156 0.194 0.339 0.517

VAE-CF + RD [1, 20] 0.143 0.181 0.321 0.513 0.239 0.279 0.466 0.634 0.294 0.339 0.543 0.723 0.178 0.216 0.379 0.557

Data-driven Preference Aggregators

COM [40] 0.143 0.154 0.232 0.286 0.329 0.348 0.472 0.557 0.223 0.234 0.326 0.365 0.283 0.288 0.417 0.436

Crowdrec [27] 0.082 0.101 0.217 0.315 0.353 0.370 0.534 0.609 0.325 0.338 0.489 0.548 0.121 0.188 0.375 0.681

AGREE [7] 0.123 0.168 0.332 0.545 0.242 0.292 0.484 0.711 0.160 0.223 0.351 0.605 0.126 0.173 0.310 0.536

MoSAN [34] 0.470 0.494 0.757 0.875 0.287 0.334 0.548 0.738 0.323 0.372 0.584 0.779 0.193 0.239 0.424 0.639

Group Information Maximization Recommenders (GroupIM)

GroupIM-Maxpool 0.488 0.501 0.676 0.769 0.479 0.505 0.676 0.776 0.433 0.463 0.628 0.747 0.291 0.313 0.524 0.637

GroupIM-Meanpool 0.629 0.637 0.778 0.846 0.518 0.543 0.706 0.804 0.476 0.504 0.682 0.788 0.323 0.351 0.569 0.709

GroupIM-Attention 0.633 0.647 0.782 0.851 0.521 0.546 0.716 0.813 0.477 0.505 0.686 0.796 0.325 0.356 0.575 0.714

Table 2: Group recommendation results on four datasets, R@K and N@K denote the Recall@K and NDCG@K metrics at

K = 20 and 50. The GroupIM variants indicate maxpool, meanpool, and attention as preference aggregators in our MI

maximization framework.GroupIMachieves significant gains of 31 to 62%NDCG@20 and 3 to 28%Recall@20over competing

group recommenders. Notice that meanpool and attention variants achieve comparable performance across all datasets.

We tested GroupIM by substituting three preference aggrega-

tors, Maxpool, Meanpool, and Attention (Section 4.4.2). All

experiments were conducted on a single Nvidia Tesla V100 GPU

with PyTorch [25] implementations on the Linux platform. Our

implementation of GroupIM and datasets are publicly available
3
.

5.3 Experimental Setup

We randomly split the set of all groups into training (70%), validation

(10%), and test (20%) sets, while utilizing the individual interactions

of all users for training. Note that each group appears only in one

of the three sets. The test set contains strict ephemeral groups (i.e., a
specific combination of users) that do not occur in the training set.

Thus, we train on ephemeral groups and test on strict ephemeral

groups. We use NDCG@K and Recall@K as evaluation metrics.

We tune the latent dimension in the range {32, 64, 128} and other
baseline hyper-parameters in ranges centered at author-provided

values. In GroupIM, we use two fully connected layers of size 64

each in fenc(·) and tune λ in the range {2−4, 2−3, . . . , 26}. We use 5

negatives for each true user-group pair to train the discriminator.

5.4 Experimental Results

We note the following key observations from our experimental

results comparing GroupIM with its three aggregator variants,

against competing baselines on group recommendation (Table 2).

First, heuristic score aggregation with neural recommenders

(i.e., VAE-CF) performs comparable to (and often beats) proba-

bilistic models (COM, Crowdrec). Neural methods with multiple

non-linear transformations, are expressive enough to identify latent

groups of similar users just from their individual interactions.

3
https://github.com/CrowdDynamicsLab/GroupIM

Second, there is no clear winner among the different pre-defined

score aggregation strategies, e.g., VAE-CF + LM (least misery) out-

performs the rest on Gowalla and Douban, while VAE-CF + LM

(averaging) is superior on Yelp and Weeplaces. This empirically val-

idates the non-existence of a single optimal strategy for all datasets.

Third, MoSAN [34] outperforms both probabilistic models and

fixed score aggregators on most datasets.MoSAN achieves better

results owing to the expressive power of neuural preference aggre-

gators (such as sub-attention networks) to capture group member

interactions, albeit not explicitly differentiating personal and group

activities. Notice that naive joint training over personal and group

activities via static regularization (as in AGREE [7]) results in poor

performance due to sparsity in group interactions. Static regular-

izers on XU cannot distinguish the role of users across groups,

resulting in models that lack generalisation to ephemeral groups.

GroupIM variants outperform baselines significantly, with at-

tention achieving overall best results. In contrast to neural meth-

ods (i.e., MoSAN and AGREE), GroupIM regularizes the latent

representations by contextually weighting the personal preferences

of informative members, thus effectively tackling group interaction

sparsity. The maxpool variant is noticeably inferior, due to the

higher sensitivity of max operation to outlier group members.

Note that Meanpool performs comparably to attention. This

is because in GroupIM, the discriminator D does the heavy-lifting

of contextually differentiating the role of users across groups to

effectively regularize the encoder fenc(·) and aggregator fagg(·)
modules. If fenc(·) andD are expressive enough, efficientmeanpool

aggregation can achieve near state-of-the-art results (Table 2)

An important implication is the reduced inference complexity of

our model, i.e., once trained using our MI maximizing framework,

simple aggregators (such as meanpool) suffice to achieve state-of-

the-art performance. This is especially significant, considering that
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Figure 2: NDCG@K across size of rank list K . Variance bands indicate 95% confidence intervals over 10 random runs. Exist-

ing methods underperform since they either disregard member roles (VAE-CF variants) or overfit to the sparse group activi-

ties. GroupIM contextually identifies informative members and regularizes their representations, to show strong gains.

Dataset Weeplaces Gowalla

Metric N@50 R@50 N@50 R@50

Base Group Recommender Variants

(1) Base (LG ) 0.420 0.621 0.369 0.572

(2) Base (LG + λLU ) 0.427 0.653 0.401 0.647

GroupIM Variants

(3) GroupIM (LG + LMI ) 0.431 0.646 0.391 0.625

(4) GroupIM (Uniform weights) 0.441 0.723 0.418 0.721

(5) GroupIM (Cosine similarity) 0.488 0.757 0.445 0.739

(6) GroupIM (No pre-training) 0.524 0.773 0.472 0.753

(7) GroupIM (LG + λLUG + LMI ) 0.543 0.804 0.505 0.796

Table 3: GroupIM ablation study (NDCG and Recall at K =
50). Contrastive representation learning (row 3) improves

the base recommender (row 1), but is substantially more ef-

fective with group-adaptive preference weighting (row 7).

our closest baselineMoSAN [34] utilizes sub-attentional preference

aggregation networks that scale quadratically with group size.

We compare the variation inNDCG scores with size of rank list in

figure 2. We only depict the best aggregator forVAE-CF.GroupIM

consistently generates more precise recommendations across all

datasets. We observe smaller gains in Douban, where the user-

item interactions exhibit substantial correlation with corresponding

group activities. GroupIM achieves significant gains in character-

izing diverse groups, evidenced by our results in section 5.6.

5.5 Model Analysis

In this section, we present an ablation study to analyze several

variants of GroupIM, guided by our motivations (Section 3.3). In

our experiments, we choose attention as the aggregator due to its

consistently high performance. We conduct studies on Weeplaces

and Gowalla to report NDCG@50 and Recall@50 in Table 3.

First, we examine the base group recommender R (Section 3.2)

which does not utilize MI maximization for model training (Table 3).

Base Group Recommender. We examine two variants below:

(1) We train R on just group activitiesXG with loss LG (equation 3).

(2) We train R jointly on individual XU and group XG activities

with static regularization on XU using joint loss LR (Equation 4).

In comparison to similar neural aggregator MoSAN, our base

recommender R is stronger on NDCG but inferior on Recall. The

difference is likely due to the multinomial likelihood used to train

R, in contrast to the ranking loss inMoSAN. Static regularization

viaXU (row 1) results in higher gains for Gowalla (richer user-item

interactions) with relatively larger margins for Recall than NDCG.

Next, we examine model variants of GroupIM in two parts:

GroupIM: Contrastive Representation Learning. We analyze

the benefits derived by just training the contrastive discriminatorD
to capture group member associations, i.e., we define a model vari-

ant (row 3) to optimize just LG +LMI , without the LUG term. Direct

MI maximization (row 3) improves over the base recommender R
(row 1), validating the benefits of contrastive regularization, how-

ever still suffers from lack of user preference prioritization.

GroupIM: Group-adaptive Preference Prioritization. We an-

alyze the utility of data-driven contextual weighting (via user-group

MI), by examining two alternate fixed strategies to definew(u,д):
(4) Uniform weights: We assign the same weight w(u,д) = 1 for

each group member u in group д, when optimizing LUG .

(5) Cosine similarity: To model user-group correlation, we set the

weightw(u,д) as the cosine similarity between xu and xд .
From table 3 (rows 4 and 5), the uniform weights variant of loss

LUG (row 4) surpasses the statically regularized model (row 2), due

to more direct feedback from XU to group embedding eд during

model training. Cosine similarity (row 5) achieves stronger gains

owing to more accurate correlation-guided user weighting across

groups. Our model GroupIM (row 7) has strong gains over the

fixed weighting strategies as a result of its regularization strategy

to contextually identify informative members across groups.

GroupIM: Pre-training fenc(·) on XU . We depict model perfor-

mance without pre-training (random initializations) in row 6. Our

model (row 7) achieves noticeable gains; pre-training identifies

good model initialization points for better convergence.

5.6 Impact of Group Characteristics

In this section, we examine our results to understand the reason

for GroupIM’s gains. We study ephemeral groups along three

facets: group size; group coherence; and group aggregate diversity.

5.6.1 Group Size. We classify test groups into bins based on five

levels of group size (2-3, 4-5, 6-7, 8-9, and ≥10). Figure 3 depicts the
variation in NDCG@50 scores on Weeplaces and Gowalla datasets.

We make three key observations: methods that explicitly distin-

guish individual and group activities (such as COM, CrowdRec,

GroupIM), exhibit distinctive trends wrt group size. In contrast,

MoSAN [34] and AGREE [7], which either uniformly mix both

behaviors or apply static regularizers, show no noticeable variation;

Performance generally increases with group size. Although test
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Figure 3: Performance (NDCG@50), across group size

ranges. GroupIM has larger gains for larger groups due to

accurate user associations learnt via MI maximization.
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Figure 4: Performance (NDCG@50), across group coherence

quartiles (Q1: lowest, Q4: highest). GroupIM has larger gains

in Q1 & Q2 (low group coherence).

groups are previously unseen, for larger groups, subsets of inter-

user interactions are more likely to be seen during training, thus re-

sulting in better performance;GroupIM achieves higher (or steady)

gains for groups of larger sizes owing to its more accurate prioritiza-

tion of personal preferences for eachmember, e.g.,GroupIM clearly

has stronger gains for groups of sizes 8-9 and ≥ 10 in Gowalla.

5.6.2 Group Coherence. We define group coherence as the mean

pair-wise correlation of personal activities (xu ) of group members,

i.e., if a group has users who frequently co-purchase items, it re-

ceives greater coherence.We separate test groups into four quartiles

by their coherence scores. Figure 4 depicts NDCG@50 for groups

under each quartile (Q1 - Lower values), on Weeplaces and Gowalla.

GroupIM has stronger gains for groups with low coherence

(quartiles Q1 and Q2), which empirically validates the efficacy of

contextual user preference weighting in regularizing the encoder

and aggregator, for groups with dissimilar member preferences.

5.6.3 Group Aggregate Diversity. We adapt the classical aggre-
gate diversity metric [32] to define group aggregate diversity as the

total number of distinct items interacted across all group members,

i.e., if the set of all purchases of group members covers a wider

range of items, then the group has higher aggregate diversity. We

report NDCG@50 across aggregate diversity quartiles in figure 5.

Model performance typically decays (and stabilizes), with in-

crease in aggregate diversity. Diverse groups with large candidate

item sets, pose an information overload for group recommenders,

leading to worse results. Contextual prioritization with contrastive

learning, benefits diverse groups, as evidenced by the higher relative

gains of GroupIM for diverse groups (quartiles Q3 and Q4).
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Figure 5: Performance (NDCG@50), across group aggregate

diversity quartiles (Q1: lowest, Q4: highest). GroupIM has

larger gains in Q3 & Q4 (high diversity).

5.7 Qualitative MI Discriminator Analysis

We examine the contextual weightsw(u,д) estimated by GroupIM

over test ephemeral groups, across group size and coherence.

We divide groups into four bins based on group sizes (2-3, 4-6,

7-9, and ≥ 10), and partition them into quartiles based on group

coherence within each bin. To analyze the variation in contextual
informativeness across group members, we computeMI variation as

the standard deviation of scores given by D over group members.

Figure 6 depicts letter-value plots of MI variation for groups in

corresponding coherence quartiles across group sizes onWeeplaces.

MI variation increases with group size, since larger groups often

comprise users with divergent roles and interests. Thus, the dis-

criminator generalizes to unseen groups, to discern and estimate

markedly different relevance scores for each group member. To fur-

ther examine the intuition conveyed by the scores, we compare MI
variation across group coherence quartiles within each size-range.

MI variation is negatively correlated with group coherence for

groups of similar sizes, e.g., MI variation is consistently higher for

groups with low coherence (quartiles Q1 and Q2). For highly co-

herent groups (quartile Q4), D assigns comparable scores across all

members, which is consistent with our intuitions and earlier results

on the efficacy of simple averaging strategies for such groups.

We also analyze parameter sensitivity to user-preference weight

λ. Low λ values result in overfitting to the group activities XG ,

while larger values result in degenerate solutions that lack group

distinctions (plot excluded for the sake of brevity).

5.8 Limitations

We identify two limitations of our work. Despite learning to con-

textually prioritize users’ preferences across groups, λ controls the

overall strength of preference regularization. Since optimal λ varies

across datasets and applications, we plan to explore meta-learning

approaches to eliminate such hyper-parameters [28].

GroupIM relies on user-group MI estimation to contextually

identify informative members, which might become challenging

when users have sparse individual interaction histories. In such a

scenario, side information (e.g., social network of users), or contex-

tual factors (e.g., location, interaction time) [18] can prove effective.

6 CONCLUSION

This paper introduces a recommender architecture-agnostic frame-

work GroupIM that integrates arbitrary neural preference encoders



Q1 Q2 Q3 Q4
Group coherence

0.0

0.2

0.4

0.6

0.8

1.0

St
an

da
rd

 D
ev

ia
tio

n 
in

 M
I

Group sizes 2-3

Q1 Q2 Q3 Q4
Group coherence

0.0

0.2

0.4

0.6

0.8

1.0
Group sizes 4-6

Q1 Q2 Q3 Q4
Group coherence

0.0

0.2

0.4

0.6

0.8

1.0 Group sizes 7-9

Q1 Q2 Q3 Q4
Group coherence

0.0

0.2

0.4

0.6

0.8

1.0
Group sizes ≥  10

Figure 6: MI variation (std. deviation in discriminator scores over members) per group coherence quartile across group sizes.

For groups of a given size, as coherence increases,MI variation decreases. As groups increase in size,MI variation increases.

and aggregators for ephemeral group recommendation. To over-

come group interaction sparsity, GroupIM regularizes the user-

group representation space by maximizing user-group MI to con-

trastively capture preference covariance among group members.

Unlike prior work that incorporate individual preferences through

static regularizers, we dynamically prioritize the preferences of

informative members through MI-guided contextual preference

weighting. Our extensive experiments on four real-world datasets

show significant gains for GroupIM over state-of-the-art methods.
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